GoGo's home


  • 首页

  • 归档

发布React组件库到npm私服

发表于 2019-11-16

使用 nexus 搭建 npm 私服

这里怎么去搭建 nexus 就不介绍了,在 nexus 设置模块中。

创建 Repositories

  • 1: npm (proxy) 代理仓库
  • 2: npm (hosted) 是私有仓库
  • 3: npm (group) 是组合前面两个

创建代理仓库

创建 npm (hosted) 仓库

创建 npm (group) 仓库

组件库采用的技术方案

技术方案,改技术能很好的开发组件打包,发布组件,编写文档。项目也采用 TypeScript 来开发,主要是因为这样让后期开发人员能很好的使用。(package.json 中 peerDependencies 是不会被打包进去的),其它的配置信息可以去看 father 的文档。

开发流程

  • 3.1 开发组件
    在 src 的目录下面新建要开发的组件,文件名字采用的是驼峰的方式(首字母小写)。可参考写过的组件,接下来就是你自己自由的发挥了。

  • 3.2 组件说明
    就是你要写怎么使用这个组件,让组内的人员知道怎么使用。在文件夹下面新建 index.mdx(文件后缀名不要写错了)。这里简单的说明一下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
name: TableHeader (组件名字)
route: /TableHeader (文档的路由地址)
menu: '前端组件库'
edit: false
sidebar: true
---
import { Playground } from 'docz';
import { Form, Table } from 'antd';
import TableHeader from './index.tsx';
# TableHeader
搜索条件嵌入到Table组件
## 代码演示
<Playground>
{
() => {
const Demo = (props) => {
const fetchList = () => {
props.form.validateFields((err, values) => {
console.log('err', err)
console.log('values', values)
})
};
const columns = [
{
title: () => <TableHeader onSearch={fetchList} form={props.form} name="id" title="id" />,
dataIndex: 'id',
key: 'id',
},
{
title: () => <TableHeader onSearch={fetchList} form={props.form} name="userName"
title="userName" />,
dataIndex: 'userName',
key: 'userName',
},
{
title: () => <TableHeader onSearch={fetchList} form={props.form} name="address"
isNumber title="address" />,
dataIndex: 'address',
key: 'address',
},
{
title: () => <TableHeader onSearch={fetchList} form={props.form} name="age" isNumber
title="age" />,
dataIndex: 'age',
key: 'age',
width: 100,
},
{
title: () => <TableHeader onSearch={fetchList} form={props.form} name="sex" title="sex"
headerType="select" options={[{id: 0, value: '男'}, {id:1, value:'女'}]} />,
dataIndex: 'sex',
key: 'sex',
width: 150,
},
];
return (
<Table
columns={columns}
list={[]}
/>
)
}
const FormDemo = Form.create()(Demo)
return <FormDemo />
}
}
</Playground>
  • 3.3 在线文件查看

npm start, Open your browser and visit http://127.0.0.1:8001 , see more at Development,就是一个组件库的介绍网页。

发布组件

发布到 npm 的私服,在项目目录下新建.yarnrc

1
registry "http://192.168.3.19:8081/repository/npm-group/"

在 package.json 中设置

1
2
3
"publishConfig": {
"registry": "http://192.168.3.19:8081/repository/npm-private/"
},
  • 4.1 进行登录,要求输入用户名和密码,就是 nexus 的密码,可以新建多个用户。

    1
    yarn login --registry http://192.168.3.19:8081/repository/npm-private/
  • 4.2 发布到私服。

    1
    yarn pub --registry http://192.168.3.19:8081/repository/npm-private/

如何使用组件

在你使用的项目中新建如果你用 npm 就是.npmrc,如果是 yarn 就是.yarnrc 文件内容分别为
.npmrc 文件

1
2
registry=http://192.168.3.19:8081/repository/npm-group/
disturb=http://192.168.3.19:8081/repository/npm-private/

.yarnrc 文件

1
registry "http://192.168.3.19:8081/repository/npm-group/"

使用 npm login 和 yarn login 登录私服(用户名和密码就是上文说到的 npm 私服)

然后就可以使用也可以使用 yarn

1
npm i @gogo/app-core --save

配合之前的 jenkins

配合 jenkins,写入一些脚本,实现代码上传之后,自动打包发布组件库和使用文档。

react-native的列表使用

发表于 2019-07-22

在官网中使用列表组件是FlatList,具体的api使用可以自行去官网查看,本人是从android端转来的,熟悉android开发的在列表加载初期(网络请求开发时候),会出现loading页面,当数据加载成功的时候,有数据的时候会显示数据,数据为空时候显示NotDataView页面,当Error时候会出现请求出差页面,列表的下拉刷新使用的时候官网自带的RefreshControl(也可以自行去写动画)。

基础组件设计

ErrorView(数据加载出错),LoadingView(正在请求中),NotDataView(无数据),ListView(带有上述功能的组件),前三者可以根据自己项目的效果修改,在此我使用最简单的方式实现。

代码实现

ErrorView(非常简单的显示加载出差和重试功能)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import React from "react";
import { TouchableOpacity, Text, StyleSheet } from "react-native";
interface ErrorViewProps {
errorMsg?: string;
onPress: () => void;
}
const ErrorView: React.SFC<ErrorViewProps> = ({ errorMsg }) => (
<TouchableOpacity style={styles.container}>
<Text>{errorMsg}</Text>
</TouchableOpacity>
);
ErrorView.defaultProps = {
errorMsg: "服务器出差,请稍后再试..."
};
const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: "center",
alignItems: "center"
}
});
export default ErrorView;

LoadingView(正在加载中)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import React from "react";
import { View, Text, StyleSheet, ActivityIndicator } from "react-native";
interface LoadingViewProps {
backgroundColor?: string;
indicatorColor?: string;
}
const LoadingView: React.SFC<LoadingViewProps> = ({
backgroundColor,
indicatorColor
}) => (
<View style={[styles.loading, { backgroundColor: backgroundColor }]}>
<ActivityIndicator size="large" color={indicatorColor} />
<Text style={styles.loadingText}>数据加载中...</Text>
</View>
);
LoadingView.defaultProps = {
backgroundColor: "#ffffff",
indicatorColor: "4C7FEF"
};
const styles = StyleSheet.create({
loading: {
flex: 1,
alignItems: "center",
justifyContent: "center"
},
loadingText: {
marginTop: 10,
textAlign: "center"
}
});
export default LoadingView;

NotDataView(简单的不能再简单)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import React from "react";
import { View, Text, StyleSheet } from "react-native";
interface NotDataViewProps {
msg: string;
}
const NotDataView: React.SFC<NotDataViewProps> = ({ msg }) => (
<View style={styles.container}>
<Text>{msg}</Text>
</View>
);
NotDataView.defaultProps = {
msg: "暂无数据"
};
const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: "center",
alignItems: "center"
}
});
export default NotDataView;

重头戏(ListView)

先上代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
interface ListViewProps {
dataSource: ReadonlyArray<any>;
renderItem: ListRenderItem<any>;
onFetchList: (
loading: boolean,
isRefreshing: boolean,
loadMore: boolean,
pn: number
) => void;
isRefreshing: boolean;
loading: boolean;
loadMore: boolean;
hasMore: boolean;
error: boolean;
refreshColor?: string;
backgroundColor?: string;
defaultPage?: number;
}
const DefaultPage = 0;
class ListView extends React.PureComponent<ListViewProps> {
static defaultProps = {
refreshColor: "#4C7FEF",
backgroundColor: "#ffffff",
defaultPage: DefaultPage
};
page: number;
constructor(props: ListViewProps) {
super(props);
const { defaultPage } = props;
this.page = defaultPage || DefaultPage;
}
componentDidMount() {
const { onFetchList } = this.props;
onFetchList(true, false, false, this.page);
}
onEndReached = () => {
const { onFetchList, loadMore, hasMore, error } = this.props;
if (loadMore || !hasMore || error) {
return;
}
this.page = this.page + 1;
onFetchList(false, false, true, this.page);
};
renderFooter = () => {
const { loadMore, error } = this.props;
if (loadMore) {
return (
<View style={styles.footer}>
<ActivityIndicator />
<Text style={{ marginLeft: 5 }}>加载中...</Text>
</View>
);
}
if (error) {
return (
<TouchableOpacity
style={styles.errorFooter}
onPress={() => {
const { onFetchList } = this.props;
onFetchList(false, false, true, this.page);
}}
>
<Text>加载出错,点击重试</Text>
</TouchableOpacity>
);
}
return <View />;
};
handleRefresh = () => {
const { onFetchList, defaultPage } = this.props;
this.page = defaultPage || DefaultPage;
onFetchList(false, true, false, this.page);
};
render() {
const {
dataSource,
renderItem,
isRefreshing,
loading,
error,
refreshColor,
backgroundColor,
defaultPage
} = this.props;
const refreshColors: string[] = [refreshColor || "#4C7FEF"];
if (loading && this.page === defaultPage) {
return (
<LoadingView
indicatorColor={refreshColor}
backgroundColor={backgroundColor}
/>
);
}
if (error && this.page === defaultPage) {
return (
<ErrorView
onPress={() => {
const { onFetchList } = this.props;
onFetchList(true, false, false, this.page);
}}
/>
);
}
return (
<FlatList
data={dataSource}
onEndReached={this.onEndReached}
onEndReachedThreshold={0.2}
ListEmptyComponent={NotDataView}
keyExtractor={(item, index) => item.id || index.toString()}
renderItem={renderItem}
ListFooterComponent={this.renderFooter}
refreshControl={
<RefreshControl
refreshing={isRefreshing}
onRefresh={this.handleRefresh}
colors={refreshColors}
progressBackgroundColor={backgroundColor}
/>
}
/>
);
}
}
const styles = StyleSheet.create({
footer: {
height: 40,
flexDirection: "row",
justifyContent: "center",
alignItems: "center"
},
errorFooter: {
height: 40,
flexDirection: "row",
justifyContent: "center",
alignItems: "center"
}
});
export default ListView;

从Props可以很明显的看出该组件的功能,dataSource(数据源),renderItem(渲染的Item),onFetchList(请求数据),isRefreshing(是否正在下拉刷新),loading(是否显示正在加载),loadMore(是否显示footer正在加载),hasMore(是否还有数据),error(是否加载出错),refreshColor(下拉刷新的颜色),backgroundColor(背景颜色),defaultPage(默认开始页码)。

接口设计

1
2
3
4
5
6
export interface PageEntity<TMODLE> {
//代表是否还有数据
hasMore: boolean;
list: TMODLE[];
totalCount: number;
}

redux设计

项目中使用的是redux,我们中间件采用的是redux-promise-middleware(简单的来说就是把Promise的三种状态采用拼接的type的形式)。一般来说一个接口有请求开始,成功,失败。

handleReducer设计(对应Promise的三种状态)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
export interface BaseAction {
type: string;
}
export interface Action<Payload> extends BaseAction {
payload: Payload;
}
export interface ActionMeta<Payload, Meta> extends Action<Payload> {
meta: Meta;
}
export interface Reducer<State, Payload, Meta> {
pending: (state: State, action: ActionMeta<Payload, Meta>) => State;
fulfilled: (state: State, action: ActionMeta<Payload, Meta>) => State;
rejected: (state: State, action: ActionMeta<Payload, Meta>) => State;
}
export default function handleReducer<State, Payload, Meta = any>(
typeName: string,
initialState: State,
reducer: Reducer<State, Payload, Meta>
) {
return function(state = initialState, action: ActionMeta<Payload, Meta>) {
const type = action.type;
const { pending, fulfilled, rejected } = reducer;
if (pending && typeName + "_PENDING" === type) {
return pending(state, action);
}
if (fulfilled && typeName + "_FULFILLED" === type) {
return fulfilled(state, action);
}
if (rejected && typeName + "_REJECTED" === type) {
return rejected(state, action);
}
return state;
};
}

pageReducer的设计(基本看代码都能看出来和ListView相对应)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import handleReducer from "./handleReducer";
export interface PageState<TMODLE> {
dataSource: TMODLE[];
isRefreshing: boolean;
loading: boolean;
loadMore: boolean;
hasMore: boolean;
error: boolean;
}
export interface PageMeta {
loading: boolean;
isRefreshing: boolean;
loadMore: boolean;
}
export interface PageEntity<TMODLE> {
hasMore: boolean;
list: TMODLE[];
totalCount: number;
}
export function pageAction<TMODLE, PARAMS>(
typeName: string,
api: (param: PARAMS) => Promise<PageEntity<TMODLE>>,
paramCallback?: (param: PARAMS) => PARAMS
) {
return (
loading: boolean,
isRefreshing: boolean,
loadMore: boolean,
param: PARAMS
) => ({
type: typeName,
payload: paramCallback ? api(paramCallback(param)) : api(param),
meta: {
loading,
isRefreshing,
loadMore
}
});
}
const initialState: PageState<any> = {
dataSource: [],
isRefreshing: false,
loading: false,
loadMore: false,
hasMore: false,
error: false
};
export function pageReducer<TMODEL>(typeName: string) {
return handleReducer<PageState<TMODEL>, PageEntity<TMODEL>, PageMeta>(
typeName,
initialState,
{
pending: (state, { meta }) => ({
...state,
...meta
}),
fulfilled: (state, { payload }) => ({
...state,
isRefreshing: false,
loading: false,
loadMore: false,
error: false,
hasMore: payload.hasMore,
dataSource: state.loadMore
? state.dataSource.concat(payload.list)
: payload.list
}),
rejected: state => ({
...state,
isRefreshing: false,
loading: false,
loadMore: false,
hasMore: false,
error: true
})
}
);
}

使用

好比有个UserList页面

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
interface UserListProps {
fetchUserList: (
loading: boolean,
isRefreshing: boolean,
loadMore: boolean,
param: CommomListParams
) => void;
userList: PageState<UserData>;
}
class UserList extends React.Component<UserListProps> {
onFetchList = (
loading: boolean,
isRefreshing: boolean,
loadMore: boolean,
page: number
) => {
const { fetchUserList } = this.props;
fetchUserList(loading, isRefreshing, loadMore, { start: page });
};
renderUserItem = ({ item }: ListRenderItemInfo<UserData>) => (
<View>
<Text>{item.id}</Text>
<Text>{item.name}</Text>
<Text>{item.age}</Text>
<Text>{item.sex}</Text>
</View>
);
render() {
const { userList } = this.props;
return (
<ListView
{...userList}
onFetchList={this.onFetchList}
renderItem={this.renderUserItem}
/>
);
}
}
function mapStateToProps(state: ReducerType) {
return {
userList: state.userList
};
}
export default connect(
mapStateToProps,
{
fetchUserList: fetchUserListAction
}
)(UserList);

action很简单

1
2
3
4
export const fetchUserListAction = pageAction<UserData, CommomListParams>(
User.FETCH_USER_LSIT,
fetchUserList
);

reducers也很简单,不需要写任何其它纯函数

1
2
3
4
5
6
7
8
9
const reducer = combineReducers({
userList: pageReducer<UserData>(User.FETCH_USER_LSIT)
});
export default reducer;
export interface ReducerType {
userList: PageState<UserData>;
}

总结

通过这次的封装使我对redux, Typescript有更加深入的了解。代码地址

使用Typescript, ESLint, Prettier来搭建React开发环境

发表于 2019-07-07

前端新手……………….,先安装create-react-app

使用Typescript安装

1
yarn create react-app my-test-ts --typescript

安装ESLint, Prettier

1
2
yarn add eslint eslint-plugin-react @typescript-eslint/parser @typescript-eslint/eslint-plugin --dev
yarn add prettier eslint-plugin-prettier eslint-config-prettier --dev

创建 .eslintrc.js 文件,可以加入rules的规则,但是在加入之前一定要组内讨论一下。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
module.exports = {
// 指定 ESLint parser
parser: '@typescript-eslint/parser',
extends: [
// 使用 @eslint-plugin-react 中推荐的规则
'plugin:react/recommended',
// 使用 @typescript-eslint/eslint-plugin 中推荐的规则
'plugin:@typescript-eslint/recommended',
// 使用 eslint-config-prettier 来禁止 @typescript-eslint/eslint-plugin 中那些和 prettier 冲突的规则
'prettier/@typescript-eslint',
// 使用 eslint-plugin-prettier 来将 prettier 错误作为 ESLint 错误显示
// 确保下面这行配置是这个数组里的最后一行配置
'plugin:prettier/recommended',
],
parserOptions: {
ecmaVersion: 2018, // 允许解析现代 es 特性
sourceType: 'module', // 允许使用 imports
ecmaFeatures: {
jsx: true, // 允许解析 jsx
},
},
rules: {
'react/display-name': 'off',
'react/prop-types': 'off',
'import/no-unresolved': 'off',
'react/jsx-filename-extension': [1, { "extensions": [".ts", ".tsx"] }],
'no-undef': 'off',
// 类名与接口名必须为驼峰式
'@typescript-eslint/class-name-casing': 'error',
},
settings: {
react: {
// Tells eslint-plugin-react to automatically detect the version of React to use
version: 'detect',
},
},
}

创建 .prettierrc.js 文件

1
2
3
4
5
6
7
module.exports = {
semi: false,
trailingComma: 'all',
singleQuote: true,
printWidth: 120,
tabWidth: 2,
}

安装eslint-config-airbnb

1
npx install-peerdeps --dev eslint-config-airbnb

添加 “extends”: “airbnb” 到 .eslintrc

VsCode配置

setting.json配置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
{
"eslint.autoFixOnSave": true,
"eslint.validate": [
"javascript",
"javascriptreact",
{ "language": "typescript", "autoFix": true },
{ "language": "typescriptreact", "autoFix": true }
],
"editor.formatOnSave": true,
"[javascript]": {
"editor.formatOnSave": false
},
"[javascriptreact]": {
"editor.formatOnSave": false
},
"[typescript]": {
"editor.formatOnSave": false
},
"[typescriptreact]": {
"editor.formatOnSave": false
},
"javascript.updateImportsOnFileMove.enabled": "always",
"typescript.updateImportsOnFileMove.enabled": "always"
}

jenkins+gitlab+pm2自动化部署react项目

发表于 2019-04-26

服务器

环境:centos、jenkins(汉化版)、gitlab、node、pm2都已经安装好里,这里也不再描述安装过程。
cnpm安装环境(npm网络不是很稳定,下载慢):

1
2
3
npm install -g cnpm --registry=https://registry.npm.taobao.org
//然后建软链接,要不然输入cnpm -v会出错,未找到命令的错误
sudo ln -s /usr/node/node-v8.12.0-linux-x64/node-v8.12.0-linux-x64/bin/cnpm /usr/local/bin/cnpm

jenkins设置(Gitlab Plugin、NodeJs Plugin安装)

进入jenkins的页面

点击左上角的新建任务,输入你的任务名字比如(text-web),建议名字由项目名字-前端部署的端口号,记住名字后面会用到,选择构建一个自由风格的软件任务

会进入一个页面有General、源码管理、构建触发器、构建环境、构建、构建后操作的tab页面。
1:先是General中描述,输入你想要对项目的描述。

2:源码管理,选择Git,在Repository URL输入,你要部署项目的gitlab的地址,我这里引用的方式是http不是ssh的,Credentials中选择就是你自己的gitlab的账号,还没有添加过的添加add

会出现下面页面UserName和Password添加你自己的gitlab账号,点击添加回到之前的页面在Credentials中就可以选择你添加的账号。

Branch Specifier (blank for ‘any’)输入dev,因为我只是设置dev的时候才去采用自动化构建。
3:构建触发器
选择Build when a change is pushed to GitLab. GitLab webhook ,出现下图,记住GitLab webhook Url地址:

点击高级按钮出现下图,看到Secret token,点击Generate出现一串字符,记录下来。

4:构建环境
选择Provide Node & npm bin/ folder to PATH
在NodeJS Installation选择NodeJs(之前安装过)

5:构建
点击添加构建步骤,选择执行Shell输入(deploy.sh就是要执行的脚本文件名)

1
2
3
cnpm install
cnpm run build
sh deploy.sh


记得保存,在jenkins设置中记录两个,第一构建触发器中的GitLab webhook Url地址和Secret token后续会用到。

gitlab(汉化)设置

进入要部署的gitlab项目地址,点击设置中的导入所有仓库

,
在链接(URL)填入上面记录的GitLab webhook Url地址(就是jenkins你的任务地址,记得修改jenkins部署的是8000端口,要是之前直接复制的地址是8080的,一定记得改成8000端口的,一定记得改成8000端口的,一定记得改成8000端口的,重要的事情说三遍,我之前也是入坑了),在安全令牌输入Secret token后面复制的一串字符,在推送事件时间下输入dev,因为只想在dev推送的时候触发自动构建和jenkins中设置的dev相对应,点击添加Web钩子, 记得端口对应jenkins的端口。

react项目

最主要的是已经四个文件部署要用到的,config.prod.js(定义了端口和代理ip地址)、deploy.sh(运行的脚本)、pm2.json、server.js

1:config.prod.js

1
2
3
4
5
6
7
module.exports = {
//端口号
port: 4005,
//api代理地址
api: 'http://localhost:8080/',
}

2:pm2.json

1
2
3
4
5
6
7
8
9
10
11
12
{
"name": "text-web",
"script": "server.js",
"env": {
"NODE_ENV": "production"
},
"error_file": "log/app-err.log",
"out_file": "log/app-out.log",
"exec_mode": "cluster",
"instances": 1,
"log_date_format": "YYYY-MM-DD HH:mm Z"
}

3:server.js

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
'use strict';
// 依赖
const path = require('path');
const express = require('express');
const proxy = require('express-http-proxy');
const helmet = require('helmet');
const compression = require('compression');
const config = require('./config.prod');
// express 实例
const app = express();
// 设置 HTTP 头
// reference: http://expressjs.com/zh-cn/advanced/best-practice-security.html
app.use(helmet());
// 开启 gzip 压缩
// reference: http://expressjs.com/zh-cn/advanced/best-practice-performance.html
app.use(compression());
// 静态资源服务
app.use(express.static(path.join(__dirname, 'dist')));
// api proxy
app.use('/api', proxy(config.api, {
forwardPath: function (req, res) {
// return require('url').parse("/smartShoes-wechat" + req.url).path;
return require('url').parse(req.url).path;
}
}));
app.get('*', function (req, res) {
res.sendFile(__dirname + '/dist/index.html');
});
const port = config.port || process.env.PORT
console.log("prot:" + config.port)
app.listen(port, function () {
console.log('🌎 => App is running on port %s', port)

4:deploy.sh文件,要修改两个地址project_home/最后面的text-web-4005修改为你的项目-端口号,project_name就是jenkins的任务名字。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
echo '---------------------------------- 部署Begin ----------------------------------'
#定义基础路径及目录
#项目部署的地址/usr/server固定,后面由项目名字加上config.prod中的端口号,根据项目
project_home=/usr/server/text-web-4005
#jenkins服务器路径
jenkins_home=/root/.jenkins/workspace
#jenkins的任务名字
project_name=text-web
#server.js运行的依赖
mode_modules=/usr/server/node_modules/node_modules.tar.gz
tar -czf dist.tar.gz dist
rm -rf dist
if [ -d "$project_home/" ]; then
{
echo '----------------------------------文件存在----------------------------------'
rm -rf $project_home
}
fi
#建立新文件夹
mkdir $project_home
echo '---------------------------------- 文件拷贝Begin ----------------------------------'
cp $jenkins_home/$project_name/dist.tar.gz $project_home
cp $jenkins_home/$project_name/config.prod.js $project_home
cp $jenkins_home/$project_name/server.js $project_home
cp $jenkins_home/$project_name/pm2.json $project_home
cp $mode_modules $project_home
echo '---------------------------------- 文件拷贝End ----------------------------------'
echo '---------------------------------- 解压Begin ----------------------------------'
cd $project_home
tar -xzvf dist.tar.gz
tar -xzvf node_modules.tar.gz
mkdir log
rm -rf $project_home/dist.tar.gz
rm -rf $project_home/node_modules.tar.gz
echo '---------------------------------- 解压End ----------------------------------'
echo '---------------------------------- Pm2Begin ----------------------------------'
#到/usr文件夹目的是因为确保pm2第一次在安全的目录运行
cd /usr
pm2 list
cd $project_home
pm2 startOrRestart pm2.json
echo '---------------------------------- Pm2End ----------------------------------'
echo '---------------------------------- 部署End ----------------------------------'

pm2遇到的坑

当我在给一个项目配置的时候pm2出现了以下错误

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PM2 |
PM2 | Error: ENOENT: no such file or directory, uv_cwd
PM2 | at Object.resolve (path.js:1167:25)
PM2 | at Function.Module._resolveLookupPaths (module.js:424:17)
PM2 | at Function.Module._resolveFilename (module.js:542:20)
PM2 | at Function.Module._load (module.js:475:25)
PM2 | at Module.require (module.js:597:17)
PM2 | at require (internal/module.js:11:18)
PM2 | at Object.<anonymous> (/usr/node/node-v8.12.0-linux-x64/node-v8.12.0-linux-x64/lib/node_modules/pm2/lib/ProcessContainer.js:13:15)
PM2 | at Module._compile (module.js:653:30)
PM2 | at Object.Module._extensions..js (module.js:664:10)
PM2 | at Module.load (module.js:566:32)
PM2 | [2019-04-25T18:47:51.855Z] PM2 log: App name:arms-console id:0 disconnected
PM2 | [2019-04-25T18:47:51.856Z] PM2 log: App [arms-console] with id [0] and pid [27634], exited with code [1] via signal [SIGINT]
PM2 | [2019-04-25T18:47:51.857Z] PM2 log: Script /usr/server/arms-console-4004/server.js had too many unstable restarts (16). Stopped. "errored"

其它项目都是行的就是这个项目不行,后来在网上查了一通,也有人遇到这个问题,大概的解释就是在你的命令行中第一次运行pm2的那个文件夹是不能被删除的一删除就会出现这个错误,然后我运行pm2 kill然后在一个安全的目录先运行pm2 -v,问题解决了。因为我的脚本是每次部署都会把之前的文件夹删除,然后建立文件夹把必要的文件复制进去,然后解压然后删除不必要的问题,刚刚有个项目的目录是第一次运行pm2的文件夹被自动化部署的时候删除,就出现这个错误所以我在脚本里防止出现这个错误, cd /usr pm2 list,会先前去安全目录运行pm2 list,然后进入项目目录,运行pm2命令。请大家也能注意一下,在pm kill之后要先到安全目录运行以下pm2命令。

docker学习

发表于 2019-04-15

因为本人的电脑是mac的,以下操作均在mac系统下操作。

下载

地址,下载之后安装。

阿里云加速

在docker的Preferences的Daemon中的Registry mirros添加一个从阿里云获取的地址。

运行hello-world

在终端输入docker pull hello-world,这样就从docker仓库下载里镜像,docker run hello-world,创建容器。

安装redis

docker pull redis下载镜像,在 docker/redis目录下建立redis.conf文件内容为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
# Redis configuration file example.
#
# Note that in order to read the configuration file, Redis must be
# started with the file path as first argument:
#
# ./redis-server /path/to/redis.conf
# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
################################## INCLUDES ###################################
# Include one or more other config files here. This is useful if you
# have a standard template that goes to all Redis servers but also need
# to customize a few per-server settings. Include files can include
# other files, so use this wisely.
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
#
# include /path/to/local.conf
# include /path/to/other.conf
################################## MODULES #####################################
# Load modules at startup. If the server is not able to load modules
# it will abort. It is possible to use multiple loadmodule directives.
#
# loadmodule /path/to/my_module.so
# loadmodule /path/to/other_module.so
################################## NETWORK #####################################
# By default, if no "bind" configuration directive is specified, Redis listens
# for connections from all the network interfaces available on the server.
# It is possible to listen to just one or multiple selected interfaces using
# the "bind" configuration directive, followed by one or more IP addresses.
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1 ::1
#
# ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the
# internet, binding to all the interfaces is dangerous and will expose the
# instance to everybody on the internet. So by default we uncomment the
# following bind directive, that will force Redis to listen only into
# the IPv4 loopback interface address (this means Redis will be able to
# accept connections only from clients running into the same computer it
# is running).
#
# IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
# JUST COMMENT THE FOLLOWING LINE.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# bind 127.0.0.1
# Protected mode is a layer of security protection, in order to avoid that
# Redis instances left open on the internet are accessed and exploited.
#
# When protected mode is on and if:
#
# 1) The server is not binding explicitly to a set of addresses using the
# "bind" directive.
# 2) No password is configured.
#
# The server only accepts connections from clients connecting from the
# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
# sockets.
#
# By default protected mode is enabled. You should disable it only if
# you are sure you want clients from other hosts to connect to Redis
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
protected-mode yes
# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
port 6379
# TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
tcp-backlog 511
# Unix socket.
#
# Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 700
# Close the connection after a client is idle for N seconds (0 to disable)
timeout 0
# TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
# equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
#
# A reasonable value for this option is 300 seconds, which is the new
# Redis default starting with Redis 3.2.1.
tcp-keepalive 300
################################# GENERAL #####################################
# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
daemonize no
# If you run Redis from upstart or systemd, Redis can interact with your
# supervision tree. Options:
# supervised no - no supervision interaction
# supervised upstart - signal upstart by putting Redis into SIGSTOP mode
# supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET
# supervised auto - detect upstart or systemd method based on
# UPSTART_JOB or NOTIFY_SOCKET environment variables
# Note: these supervision methods only signal "process is ready."
# They do not enable continuous liveness pings back to your supervisor.
supervised no
# If a pid file is specified, Redis writes it where specified at startup
# and removes it at exit.
#
# When the server runs non daemonized, no pid file is created if none is
# specified in the configuration. When the server is daemonized, the pid file
# is used even if not specified, defaulting to "/var/run/redis.pid".
#
# Creating a pid file is best effort: if Redis is not able to create it
# nothing bad happens, the server will start and run normally.
pidfile /var/run/redis_6379.pid
# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel notice
# Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
logfile ""
# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no
# Specify the syslog identity.
# syslog-ident redis
# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0
# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
databases 16
# By default Redis shows an ASCII art logo only when started to log to the
# standard output and if the standard output is a TTY. Basically this means
# that normally a logo is displayed only in interactive sessions.
#
# However it is possible to force the pre-4.0 behavior and always show a
# ASCII art logo in startup logs by setting the following option to yes.
always-show-logo yes
################################ SNAPSHOTTING ################################
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving completely by commenting out all "save" lines.
#
# It is also possible to remove all the previously configured save
# points by adding a save directive with a single empty string argument
# like in the following example:
#
# save ""
save 900 1
save 300 10
save 60 10000
# By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes
# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes
# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes
# The filename where to dump the DB
dbfilename dump.rdb
# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir ./
################################# REPLICATION #################################
# Master-Replica replication. Use replicaof to make a Redis instance a copy of
# another Redis server. A few things to understand ASAP about Redis replication.
#
# +------------------+ +---------------+
# | Master | ---> | Replica |
# | (receive writes) | | (exact copy) |
# +------------------+ +---------------+
#
# 1) Redis replication is asynchronous, but you can configure a master to
# stop accepting writes if it appears to be not connected with at least
# a given number of replicas.
# 2) Redis replicas are able to perform a partial resynchronization with the
# master if the replication link is lost for a relatively small amount of
# time. You may want to configure the replication backlog size (see the next
# sections of this file) with a sensible value depending on your needs.
# 3) Replication is automatic and does not need user intervention. After a
# network partition replicas automatically try to reconnect to masters
# and resynchronize with them.
#
# replicaof <masterip> <masterport>
# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the replica to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the replica request.
#
# masterauth <master-password>
# When a replica loses its connection with the master, or when the replication
# is still in progress, the replica can act in two different ways:
#
# 1) if replica-serve-stale-data is set to 'yes' (the default) the replica will
# still reply to client requests, possibly with out of date data, or the
# data set may just be empty if this is the first synchronization.
#
# 2) if replica-serve-stale-data is set to 'no' the replica will reply with
# an error "SYNC with master in progress" to all the kind of commands
# but to INFO, replicaOF, AUTH, PING, SHUTDOWN, REPLCONF, ROLE, CONFIG,
# SUBSCRIBE, UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, PUBLISH, PUBSUB,
# COMMAND, POST, HOST: and LATENCY.
#
replica-serve-stale-data yes
# You can configure a replica instance to accept writes or not. Writing against
# a replica instance may be useful to store some ephemeral data (because data
# written on a replica will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# Since Redis 2.6 by default replicas are read-only.
#
# Note: read only replicas are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only replica exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only replicas using 'rename-command' to shadow all the
# administrative / dangerous commands.
replica-read-only yes
# Replication SYNC strategy: disk or socket.
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# -------------------------------------------------------
#
# New replicas and reconnecting replicas that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the replicas.
# The transmission can happen in two different ways:
#
# 1) Disk-backed: The Redis master creates a new process that writes the RDB
# file on disk. Later the file is transferred by the parent
# process to the replicas incrementally.
# 2) Diskless: The Redis master creates a new process that directly writes the
# RDB file to replica sockets, without touching the disk at all.
#
# With disk-backed replication, while the RDB file is generated, more replicas
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new replicas arriving will be queued and a new transfer
# will start when the current one terminates.
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple replicas
# will arrive and the transfer can be parallelized.
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
repl-diskless-sync no
# When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the replicas.
#
# This is important since once the transfer starts, it is not possible to serve
# new replicas arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more replicas arrive.
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
repl-diskless-sync-delay 5
# Replicas send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_replica_period option. The default value is 10
# seconds.
#
# repl-ping-replica-period 10
# The following option sets the replication timeout for:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of replica.
# 2) Master timeout from the point of view of replicas (data, pings).
# 3) Replica timeout from the point of view of masters (REPLCONF ACK pings).
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-replica-period otherwise a timeout will be detected
# every time there is low traffic between the master and the replica.
#
# repl-timeout 60
# Disable TCP_NODELAY on the replica socket after SYNC?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to replicas. But this can add a delay for
# the data to appear on the replica side, up to 40 milliseconds with
# Linux kernels using a default configuration.
#
# If you select "no" the delay for data to appear on the replica side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and replicas are many hops away, turning this to "yes" may
# be a good idea.
repl-disable-tcp-nodelay no
# Set the replication backlog size. The backlog is a buffer that accumulates
# replica data when replicas are disconnected for some time, so that when a replica
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the replica missed while
# disconnected.
#
# The bigger the replication backlog, the longer the time the replica can be
# disconnected and later be able to perform a partial resynchronization.
#
# The backlog is only allocated once there is at least a replica connected.
#
# repl-backlog-size 1mb
# After a master has no longer connected replicas for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last replica disconnected, for
# the backlog buffer to be freed.
#
# Note that replicas never free the backlog for timeout, since they may be
# promoted to masters later, and should be able to correctly "partially
# resynchronize" with the replicas: hence they should always accumulate backlog.
#
# A value of 0 means to never release the backlog.
#
# repl-backlog-ttl 3600
# The replica priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a replica to promote into a
# master if the master is no longer working correctly.
#
# A replica with a low priority number is considered better for promotion, so
# for instance if there are three replicas with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
#
# However a special priority of 0 marks the replica as not able to perform the
# role of master, so a replica with priority of 0 will never be selected by
# Redis Sentinel for promotion.
#
# By default the priority is 100.
replica-priority 100
# It is possible for a master to stop accepting writes if there are less than
# N replicas connected, having a lag less or equal than M seconds.
#
# The N replicas need to be in "online" state.
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the replica, that is usually sent every second.
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough replicas
# are available, to the specified number of seconds.
#
# For example to require at least 3 replicas with a lag <= 10 seconds use:
#
# min-replicas-to-write 3
# min-replicas-max-lag 10
#
# Setting one or the other to 0 disables the feature.
#
# By default min-replicas-to-write is set to 0 (feature disabled) and
# min-replicas-max-lag is set to 10.
# A Redis master is able to list the address and port of the attached
# replicas in different ways. For example the "INFO replication" section
# offers this information, which is used, among other tools, by
# Redis Sentinel in order to discover replica instances.
# Another place where this info is available is in the output of the
# "ROLE" command of a master.
#
# The listed IP and address normally reported by a replica is obtained
# in the following way:
#
# IP: The address is auto detected by checking the peer address
# of the socket used by the replica to connect with the master.
#
# Port: The port is communicated by the replica during the replication
# handshake, and is normally the port that the replica is using to
# listen for connections.
#
# However when port forwarding or Network Address Translation (NAT) is
# used, the replica may be actually reachable via different IP and port
# pairs. The following two options can be used by a replica in order to
# report to its master a specific set of IP and port, so that both INFO
# and ROLE will report those values.
#
# There is no need to use both the options if you need to override just
# the port or the IP address.
#
# replica-announce-ip 5.5.5.5
# replica-announce-port 1234
################################## SECURITY ###################################
# Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
requirepass wukewei123456
# Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to replicas may cause problems.
################################### CLIENTS ####################################
# Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 10000
############################## MEMORY MANAGEMENT ################################
# Set a memory usage limit to the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU or LFU cache, or to
# set a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have replicas attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the replicas are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of replicas is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have replicas attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for replica
# output buffers (but this is not needed if the policy is 'noeviction').
#
# maxmemory <bytes>
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> Evict using approximated LRU among the keys with an expire set.
# allkeys-lru -> Evict any key using approximated LRU.
# volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
# allkeys-lfu -> Evict any key using approximated LFU.
# volatile-random -> Remove a random key among the ones with an expire set.
# allkeys-random -> Remove a random key, any key.
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# noeviction -> Don't evict anything, just return an error on write operations.
#
# LRU means Least Recently Used
# LFU means Least Frequently Used
#
# Both LRU, LFU and volatile-ttl are implemented using approximated
# randomized algorithms.
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are no suitable keys for eviction.
#
# At the date of writing these commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy noeviction
# LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs more CPU. 3 is faster but not very accurate.
#
# maxmemory-samples 5
# Starting from Redis 5, by default a replica will ignore its maxmemory setting
# (unless it is promoted to master after a failover or manually). It means
# that the eviction of keys will be just handled by the master, sending the
# DEL commands to the replica as keys evict in the master side.
#
# This behavior ensures that masters and replicas stay consistent, and is usually
# what you want, however if your replica is writable, or you want the replica to have
# a different memory setting, and you are sure all the writes performed to the
# replica are idempotent, then you may change this default (but be sure to understand
# what you are doing).
#
# Note that since the replica by default does not evict, it may end using more
# memory than the one set via maxmemory (there are certain buffers that may
# be larger on the replica, or data structures may sometimes take more memory and so
# forth). So make sure you monitor your replicas and make sure they have enough
# memory to never hit a real out-of-memory condition before the master hits
# the configured maxmemory setting.
#
# replica-ignore-maxmemory yes
############################# LAZY FREEING ####################################
# Redis has two primitives to delete keys. One is called DEL and is a blocking
# deletion of the object. It means that the server stops processing new commands
# in order to reclaim all the memory associated with an object in a synchronous
# way. If the key deleted is associated with a small object, the time needed
# in order to execute the DEL command is very small and comparable to most other
# O(1) or O(log_N) commands in Redis. However if the key is associated with an
# aggregated value containing millions of elements, the server can block for
# a long time (even seconds) in order to complete the operation.
#
# For the above reasons Redis also offers non blocking deletion primitives
# such as UNLINK (non blocking DEL) and the ASYNC option of FLUSHALL and
# FLUSHDB commands, in order to reclaim memory in background. Those commands
# are executed in constant time. Another thread will incrementally free the
# object in the background as fast as possible.
#
# DEL, UNLINK and ASYNC option of FLUSHALL and FLUSHDB are user-controlled.
# It's up to the design of the application to understand when it is a good
# idea to use one or the other. However the Redis server sometimes has to
# delete keys or flush the whole database as a side effect of other operations.
# Specifically Redis deletes objects independently of a user call in the
# following scenarios:
#
# 1) On eviction, because of the maxmemory and maxmemory policy configurations,
# in order to make room for new data, without going over the specified
# memory limit.
# 2) Because of expire: when a key with an associated time to live (see the
# EXPIRE command) must be deleted from memory.
# 3) Because of a side effect of a command that stores data on a key that may
# already exist. For example the RENAME command may delete the old key
# content when it is replaced with another one. Similarly SUNIONSTORE
# or SORT with STORE option may delete existing keys. The SET command
# itself removes any old content of the specified key in order to replace
# it with the specified string.
# 4) During replication, when a replica performs a full resynchronization with
# its master, the content of the whole database is removed in order to
# load the RDB file just transferred.
#
# In all the above cases the default is to delete objects in a blocking way,
# like if DEL was called. However you can configure each case specifically
# in order to instead release memory in a non-blocking way like if UNLINK
# was called, using the following configuration directives:
lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
replica-lazy-flush no
############################## APPEND ONLY MODE ###############################
# By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information.
appendonly no
# The name of the append only file (default: "appendonly.aof")
appendfilename "appendonly.aof"
# The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log. Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec".
# appendfsync always
appendfsync everysec
# appendfsync no
# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no
# Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature.
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
# An AOF file may be found to be truncated at the end during the Redis
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Redis is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Redis itself
# crashes or aborts but the operating system still works correctly).
#
# Redis can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Redis server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "redis-check-aof" utility before to restart
# the server.
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Redis will try to read more data from the AOF file but not enough bytes
# will be found.
aof-load-truncated yes
# When rewriting the AOF file, Redis is able to use an RDB preamble in the
# AOF file for faster rewrites and recoveries. When this option is turned
# on the rewritten AOF file is composed of two different stanzas:
#
# [RDB file][AOF tail]
#
# When loading Redis recognizes that the AOF file starts with the "REDIS"
# string and loads the prefixed RDB file, and continues loading the AOF
# tail.
aof-use-rdb-preamble yes
################################ LUA SCRIPTING ###############################
# Max execution time of a Lua script in milliseconds.
#
# If the maximum execution time is reached Redis will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
#
# When a long running script exceeds the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write command was
# already issued by the script but the user doesn't want to wait for the natural
# termination of the script.
#
# Set it to 0 or a negative value for unlimited execution without warnings.
lua-time-limit 5000
################################ REDIS CLUSTER ###############################
#
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however
# in order to mark it as "mature" we need to wait for a non trivial percentage
# of users to deploy it in production.
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
# Normal Redis instances can't be part of a Redis Cluster; only nodes that are
# started as cluster nodes can. In order to start a Redis instance as a
# cluster node enable the cluster support uncommenting the following:
#
# cluster-enabled yes
# Every cluster node has a cluster configuration file. This file is not
# intended to be edited by hand. It is created and updated by Redis nodes.
# Every Redis Cluster node requires a different cluster configuration file.
# Make sure that instances running in the same system do not have
# overlapping cluster configuration file names.
#
# cluster-config-file nodes-6379.conf
# Cluster node timeout is the amount of milliseconds a node must be unreachable
# for it to be considered in failure state.
# Most other internal time limits are multiple of the node timeout.
#
# cluster-node-timeout 15000
# A replica of a failing master will avoid to start a failover if its data
# looks too old.
#
# There is no simple way for a replica to actually have an exact measure of
# its "data age", so the following two checks are performed:
#
# 1) If there are multiple replicas able to failover, they exchange messages
# in order to try to give an advantage to the replica with the best
# replication offset (more data from the master processed).
# Replicas will try to get their rank by offset, and apply to the start
# of the failover a delay proportional to their rank.
#
# 2) Every single replica computes the time of the last interaction with
# its master. This can be the last ping or command received (if the master
# is still in the "connected" state), or the time that elapsed since the
# disconnection with the master (if the replication link is currently down).
# If the last interaction is too old, the replica will not try to failover
# at all.
#
# The point "2" can be tuned by user. Specifically a replica will not perform
# the failover if, since the last interaction with the master, the time
# elapsed is greater than:
#
# (node-timeout * replica-validity-factor) + repl-ping-replica-period
#
# So for example if node-timeout is 30 seconds, and the replica-validity-factor
# is 10, and assuming a default repl-ping-replica-period of 10 seconds, the
# replica will not try to failover if it was not able to talk with the master
# for longer than 310 seconds.
#
# A large replica-validity-factor may allow replicas with too old data to failover
# a master, while a too small value may prevent the cluster from being able to
# elect a replica at all.
#
# For maximum availability, it is possible to set the replica-validity-factor
# to a value of 0, which means, that replicas will always try to failover the
# master regardless of the last time they interacted with the master.
# (However they'll always try to apply a delay proportional to their
# offset rank).
#
# Zero is the only value able to guarantee that when all the partitions heal
# the cluster will always be able to continue.
#
# cluster-replica-validity-factor 10
# Cluster replicas are able to migrate to orphaned masters, that are masters
# that are left without working replicas. This improves the cluster ability
# to resist to failures as otherwise an orphaned master can't be failed over
# in case of failure if it has no working replicas.
#
# Replicas migrate to orphaned masters only if there are still at least a
# given number of other working replicas for their old master. This number
# is the "migration barrier". A migration barrier of 1 means that a replica
# will migrate only if there is at least 1 other working replica for its master
# and so forth. It usually reflects the number of replicas you want for every
# master in your cluster.
#
# Default is 1 (replicas migrate only if their masters remain with at least
# one replica). To disable migration just set it to a very large value.
# A value of 0 can be set but is useful only for debugging and dangerous
# in production.
#
# cluster-migration-barrier 1
# By default Redis Cluster nodes stop accepting queries if they detect there
# is at least an hash slot uncovered (no available node is serving it).
# This way if the cluster is partially down (for example a range of hash slots
# are no longer covered) all the cluster becomes, eventually, unavailable.
# It automatically returns available as soon as all the slots are covered again.
#
# However sometimes you want the subset of the cluster which is working,
# to continue to accept queries for the part of the key space that is still
# covered. In order to do so, just set the cluster-require-full-coverage
# option to no.
#
# cluster-require-full-coverage yes
# This option, when set to yes, prevents replicas from trying to failover its
# master during master failures. However the master can still perform a
# manual failover, if forced to do so.
#
# This is useful in different scenarios, especially in the case of multiple
# data center operations, where we want one side to never be promoted if not
# in the case of a total DC failure.
#
# cluster-replica-no-failover no
# In order to setup your cluster make sure to read the documentation
# available at http://redis.io web site.
########################## CLUSTER DOCKER/NAT support ########################
# In certain deployments, Redis Cluster nodes address discovery fails, because
# addresses are NAT-ted or because ports are forwarded (the typical case is
# Docker and other containers).
#
# In order to make Redis Cluster working in such environments, a static
# configuration where each node knows its public address is needed. The
# following two options are used for this scope, and are:
#
# * cluster-announce-ip
# * cluster-announce-port
# * cluster-announce-bus-port
#
# Each instruct the node about its address, client port, and cluster message
# bus port. The information is then published in the header of the bus packets
# so that other nodes will be able to correctly map the address of the node
# publishing the information.
#
# If the above options are not used, the normal Redis Cluster auto-detection
# will be used instead.
#
# Note that when remapped, the bus port may not be at the fixed offset of
# clients port + 10000, so you can specify any port and bus-port depending
# on how they get remapped. If the bus-port is not set, a fixed offset of
# 10000 will be used as usually.
#
# Example:
#
# cluster-announce-ip 10.1.1.5
# cluster-announce-port 6379
# cluster-announce-bus-port 6380
################################## SLOW LOG ###################################
# The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands.
# The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
slowlog-log-slower-than 10000
# There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
slowlog-max-len 128
################################ LATENCY MONITOR ##############################
# The Redis latency monitoring subsystem samples different operations
# at runtime in order to collect data related to possible sources of
# latency of a Redis instance.
#
# Via the LATENCY command this information is available to the user that can
# print graphs and obtain reports.
#
# The system only logs operations that were performed in a time equal or
# greater than the amount of milliseconds specified via the
# latency-monitor-threshold configuration directive. When its value is set
# to zero, the latency monitor is turned off.
#
# By default latency monitoring is disabled since it is mostly not needed
# if you don't have latency issues, and collecting data has a performance
# impact, that while very small, can be measured under big load. Latency
# monitoring can easily be enabled at runtime using the command
# "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
latency-monitor-threshold 0
############################# EVENT NOTIFICATION ##############################
# Redis can notify Pub/Sub clients about events happening in the key space.
# This feature is documented at http://redis.io/topics/notifications
#
# For instance if keyspace events notification is enabled, and a client
# performs a DEL operation on key "foo" stored in the Database 0, two
# messages will be published via Pub/Sub:
#
# PUBLISH __keyspace@0__:foo del
# PUBLISH __keyevent@0__:del foo
#
# It is possible to select the events that Redis will notify among a set
# of classes. Every class is identified by a single character:
#
# K Keyspace events, published with __keyspace@<db>__ prefix.
# E Keyevent events, published with __keyevent@<db>__ prefix.
# g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
# $ String commands
# l List commands
# s Set commands
# h Hash commands
# z Sorted set commands
# x Expired events (events generated every time a key expires)
# e Evicted events (events generated when a key is evicted for maxmemory)
# A Alias for g$lshzxe, so that the "AKE" string means all the events.
#
# The "notify-keyspace-events" takes as argument a string that is composed
# of zero or multiple characters. The empty string means that notifications
# are disabled.
#
# Example: to enable list and generic events, from the point of view of the
# event name, use:
#
# notify-keyspace-events Elg
#
# Example 2: to get the stream of the expired keys subscribing to channel
# name __keyevent@0__:expired use:
#
# notify-keyspace-events Ex
#
# By default all notifications are disabled because most users don't need
# this feature and the feature has some overhead. Note that if you don't
# specify at least one of K or E, no events will be delivered.
notify-keyspace-events ""
############################### ADVANCED CONFIG ###############################
# Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
hash-max-ziplist-entries 512
hash-max-ziplist-value 64
# Lists are also encoded in a special way to save a lot of space.
# The number of entries allowed per internal list node can be specified
# as a fixed maximum size or a maximum number of elements.
# For a fixed maximum size, use -5 through -1, meaning:
# -5: max size: 64 Kb <-- not recommended for normal workloads
# -4: max size: 32 Kb <-- not recommended
# -3: max size: 16 Kb <-- probably not recommended
# -2: max size: 8 Kb <-- good
# -1: max size: 4 Kb <-- good
# Positive numbers mean store up to _exactly_ that number of elements
# per list node.
# The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size),
# but if your use case is unique, adjust the settings as necessary.
list-max-ziplist-size -2
# Lists may also be compressed.
# Compress depth is the number of quicklist ziplist nodes from *each* side of
# the list to *exclude* from compression. The head and tail of the list
# are always uncompressed for fast push/pop operations. Settings are:
# 0: disable all list compression
# 1: depth 1 means "don't start compressing until after 1 node into the list,
# going from either the head or tail"
# So: [head]->node->node->...->node->[tail]
# [head], [tail] will always be uncompressed; inner nodes will compress.
# 2: [head]->[next]->node->node->...->node->[prev]->[tail]
# 2 here means: don't compress head or head->next or tail->prev or tail,
# but compress all nodes between them.
# 3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]
# etc.
list-compress-depth 0
# Sets have a special encoding in just one case: when a set is composed
# of just strings that happen to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
set-max-intset-entries 512
# Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
# HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is converted into the dense representation.
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. The value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
hll-sparse-max-bytes 3000
# Streams macro node max size / items. The stream data structure is a radix
# tree of big nodes that encode multiple items inside. Using this configuration
# it is possible to configure how big a single node can be in bytes, and the
# maximum number of items it may contain before switching to a new node when
# appending new stream entries. If any of the following settings are set to
# zero, the limit is ignored, so for instance it is possible to set just a
# max entires limit by setting max-bytes to 0 and max-entries to the desired
# value.
stream-node-max-bytes 4096
stream-node-max-entries 100
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into a hash table
# that is rehashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
#
# The default is to use this millisecond 10 times every second in order to
# actively rehash the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply from time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
activerehashing yes
# The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
#
# The limit can be set differently for the three different classes of clients:
#
# normal -> normal clients including MONITOR clients
# replica -> replica clients
# pubsub -> clients subscribed to at least one pubsub channel or pattern
#
# The syntax of every client-output-buffer-limit directive is the following:
#
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
#
# Instead there is a default limit for pubsub and replica clients, since
# subscribers and replicas receive data in a push fashion.
#
# Both the hard or the soft limit can be disabled by setting them to zero.
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit replica 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60
# Client query buffers accumulate new commands. They are limited to a fixed
# amount by default in order to avoid that a protocol desynchronization (for
# instance due to a bug in the client) will lead to unbound memory usage in
# the query buffer. However you can configure it here if you have very special
# needs, such us huge multi/exec requests or alike.
#
# client-query-buffer-limit 1gb
# In the Redis protocol, bulk requests, that are, elements representing single
# strings, are normally limited ot 512 mb. However you can change this limit
# here.
#
# proto-max-bulk-len 512mb
# Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeout, purging expired keys that are
# never requested, and so forth.
#
# Not all tasks are performed with the same frequency, but Redis checks for
# tasks to perform according to the specified "hz" value.
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
hz 10
# Normally it is useful to have an HZ value which is proportional to the
# number of clients connected. This is useful in order, for instance, to
# avoid too many clients are processed for each background task invocation
# in order to avoid latency spikes.
#
# Since the default HZ value by default is conservatively set to 10, Redis
# offers, and enables by default, the ability to use an adaptive HZ value
# which will temporary raise when there are many connected clients.
#
# When dynamic HZ is enabled, the actual configured HZ will be used as
# as a baseline, but multiples of the configured HZ value will be actually
# used as needed once more clients are connected. In this way an idle
# instance will use very little CPU time while a busy instance will be
# more responsive.
dynamic-hz yes
# When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
aof-rewrite-incremental-fsync yes
# When redis saves RDB file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
rdb-save-incremental-fsync yes
# Redis LFU eviction (see maxmemory setting) can be tuned. However it is a good
# idea to start with the default settings and only change them after investigating
# how to improve the performances and how the keys LFU change over time, which
# is possible to inspect via the OBJECT FREQ command.
#
# There are two tunable parameters in the Redis LFU implementation: the
# counter logarithm factor and the counter decay time. It is important to
# understand what the two parameters mean before changing them.
#
# The LFU counter is just 8 bits per key, it's maximum value is 255, so Redis
# uses a probabilistic increment with logarithmic behavior. Given the value
# of the old counter, when a key is accessed, the counter is incremented in
# this way:
#
# 1. A random number R between 0 and 1 is extracted.
# 2. A probability P is calculated as 1/(old_value*lfu_log_factor+1).
# 3. The counter is incremented only if R < P.
#
# The default lfu-log-factor is 10. This is a table of how the frequency
# counter changes with a different number of accesses with different
# logarithmic factors:
#
# +--------+------------+------------+------------+------------+------------+
# | factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
# +--------+------------+------------+------------+------------+------------+
# | 0 | 104 | 255 | 255 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 1 | 18 | 49 | 255 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 10 | 10 | 18 | 142 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 100 | 8 | 11 | 49 | 143 | 255 |
# +--------+------------+------------+------------+------------+------------+
#
# NOTE: The above table was obtained by running the following commands:
#
# redis-benchmark -n 1000000 incr foo
# redis-cli object freq foo
#
# NOTE 2: The counter initial value is 5 in order to give new objects a chance
# to accumulate hits.
#
# The counter decay time is the time, in minutes, that must elapse in order
# for the key counter to be divided by two (or decremented if it has a value
# less <= 10).
#
# The default value for the lfu-decay-time is 1. A Special value of 0 means to
# decay the counter every time it happens to be scanned.
#
# lfu-log-factor 10
# lfu-decay-time 1
########################### ACTIVE DEFRAGMENTATION #######################
#
# WARNING THIS FEATURE IS EXPERIMENTAL. However it was stress tested
# even in production and manually tested by multiple engineers for some
# time.
#
# What is active defragmentation?
# -------------------------------
#
# Active (online) defragmentation allows a Redis server to compact the
# spaces left between small allocations and deallocations of data in memory,
# thus allowing to reclaim back memory.
#
# Fragmentation is a natural process that happens with every allocator (but
# less so with Jemalloc, fortunately) and certain workloads. Normally a server
# restart is needed in order to lower the fragmentation, or at least to flush
# away all the data and create it again. However thanks to this feature
# implemented by Oran Agra for Redis 4.0 this process can happen at runtime
# in an "hot" way, while the server is running.
#
# Basically when the fragmentation is over a certain level (see the
# configuration options below) Redis will start to create new copies of the
# values in contiguous memory regions by exploiting certain specific Jemalloc
# features (in order to understand if an allocation is causing fragmentation
# and to allocate it in a better place), and at the same time, will release the
# old copies of the data. This process, repeated incrementally for all the keys
# will cause the fragmentation to drop back to normal values.
#
# Important things to understand:
#
# 1. This feature is disabled by default, and only works if you compiled Redis
# to use the copy of Jemalloc we ship with the source code of Redis.
# This is the default with Linux builds.
#
# 2. You never need to enable this feature if you don't have fragmentation
# issues.
#
# 3. Once you experience fragmentation, you can enable this feature when
# needed with the command "CONFIG SET activedefrag yes".
#
# The configuration parameters are able to fine tune the behavior of the
# defragmentation process. If you are not sure about what they mean it is
# a good idea to leave the defaults untouched.
# Enabled active defragmentation
# activedefrag yes
# Minimum amount of fragmentation waste to start active defrag
# active-defrag-ignore-bytes 100mb
# Minimum percentage of fragmentation to start active defrag
# active-defrag-threshold-lower 10
# Maximum percentage of fragmentation at which we use maximum effort
# active-defrag-threshold-upper 100
# Minimal effort for defrag in CPU percentage
# active-defrag-cycle-min 5
# Maximal effort for defrag in CPU percentage
# active-defrag-cycle-max 75
# Maximum number of set/hash/zset/list fields that will be processed from
# the main dictionary scan
# active-defrag-max-scan-fields 1000

在终端输入

1
2
3
4
5
6
docker run -p 6379:6379
-v ~/docker/redis/data:/data
-v ~/docker/redis/redis.conf:/user/etc/redis/redis.conf
-d redis redis-server /user/etc/redis/redis.conf
--requirepass wukewei123456
--appendonly yes

连接

1
docker exec -it 6d58450e9e06{CONTAINER ID} redis-cli -a wukewei123456{密码}

常用命令

docker run
docker start
docker stop
docker ps -a
exit

Share项目

发表于 2019-03-26

Share项目是我自己私下在学习并且练习的一个项目,项目大概的是可以去分享自己的宠物,现在项目包含的模块有登录模块、首页模块、个人模块、设置模块。其中项目包含android端、Server端、PC后台管理、Taro端。各个端在开发中,因为是利用自己的业余时间去学习和开发的,所以在整体的进度上是比较缓慢的。在此也希望2019年能够自己花时间去尽可能的去完成,这里先简单的介绍一下各个端所使用的技术,后期会各自写文章描述在学习和开发中遇到的困难。

Server端

采用java开发为所有其它端提供api接口,所采用的技术:
1:SpringBoot开发
2:Spring Security权限管理和token
3:MyBatis持久层框架,并且使用mybatis-generator来生产代码
4:PageHelper(MyBatis的分页插件)
5:MapStruct对象与对象之间的互相转换
后期会加入swagger

Android端

采用Kotlin开发,所采用的技术,暂时完成登录和首页列表:
1:RxJava
2:Retrofit网络请求
3:Dagger2一个依赖注入库
4:Glide图片请求

Pc端后台管理

采用React开发后台开发管理系统,采用的技术:
1:React
2:react-router
3:redux
4:antd

Taro适配小程序、H5

采用Taro来开发,暂时选定适配小程序和H5端,采用的技术如下:
1:Taro
2:taro-uiui库
3:dva

总结

这四个端的学习和工作量还是比较大的,希望在接下来的时间能够坚持的去学习和不断的完成这4个端的代码,尽管进度比较慢,但也不能停止学习的脚步。

Kotlin学习之DslAdapter

发表于 2018-11-11

又开始学习kotlin了,Adapter的库在github也是一找一大堆,这次Dsl就用它来学习吧,DataBinding(支持多布局)

使用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
val mAdapter = MagicAdapter.repositoryAdapter()
.addItemDsl<String> {
resId = R.layout.item_string
dataMatch = { d, _ -> d is String }
itemId(BR.user) { User(1234567, "GoGo") }
handler(BR.presenter, View.OnClickListener {
Toast.makeText(this@MainActivity, R.string.item_string, Toast.LENGTH_LONG).show()
})
areItems = { o, n -> o == n }
}
.addItemDsl<User> {
resId = R.layout.item_user
dataMatch = { d, _ -> d is User }
handler(BR.presenter, View.OnClickListener {
Toast.makeText(this@MainActivity, R.string.item_user, Toast.LENGTH_LONG).show()
})
areItems = { o, n -> o.id == n.id }
areContents = { o, n -> o.id == n.id && o.name == n.name}
}
.build()
binding.rv.run {
adapter = mAdapter
layoutManager = LinearLayoutManager(this@MainActivity)
}
val data = ArrayList<Any>()
data.add("11111")
data.add("22222")
data.add("33333")
data.add("44444")
data.add("44444")
data.add(User(111, "张三"))
data.add(User(222, "李四"))
data.add(User(333, "王五"))
data.add(User(444, "桃六"))
mAdapter.submitList(data)

主要方法介绍addItemDsl()方法代表添加一个布局可以指定类型,传入一个MagicItem类,resId代码布局id,dataMatch是之在多布局的时候,当前item的数据和你加入的布局类型是否符合,因为是DataBinding版本,所以在布局上默认有个BR.item的,如下

1
2
3
4
5
6
7
8
9
10
11
12
13
<data>
<variable
name="item"
type="String"/>
<variable name="user" type="com.github.wkw.magicadapter.User"/>
<variable
name="presenter"
type="android.view.View.OnClickListener"/>
</data>

itemId方法就是可以给布局加入其它类型的比如我加入了User类型,handler方法也是传人id和函数,因为有时候你会onClick,onLongClick自己可以加入。areItems和areContents代表的意思是加入了DiffUtil.Callback() 里面的两个areItemsTheSame和areContentsTheSame方法。

原理

MagicAdapter里面

1
2
3
4
5
private var datas: MutableList<Any> = ArrayList()
internal val items: MutableList<MagicItem<Any>> = builder.items
private val positionToTypeMap = SparseIntArray()

item就是记录所以的布局总和,如何通过position来找到对应的布局核心代码就是如下

1
2
3
4
5
6
7
8
9
10
11
12
private fun positionToItemsIndex(position: Int): Int {
if (items.isEmpty()) {
throw RuntimeException("item must add")
}
items.forEachIndexed { index, magicItem ->
if (magicItem.getItemViewType(datas[position], position)) {
positionToTypeMap.put(position, index)
return index
}
}
throw RuntimeException("can't find matched item")
}

onBindViewHolder默认

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
override fun onBindViewHolder(holder: BindingViewHolder<ViewDataBinding>, postion: Int) {
val data = datas[postion]
val magicItem = items[positionToTypeMap.get(postion)]
holder.binding.setVariable(BR.item, data)
val handlers = magicItem.handlers()
for ((id, handle) in handlers) {
holder.binding.setVariable(id, handle)
}
val itemIds = magicItem.itemIds()
for ((idGet, setter) in itemIds) {
val itemVariable = idGet(data)
holder.binding.setVariable(itemVariable, setter(data))
}
holder.binding.executePendingBindings()
}

其实代码量很少。

支持Dsl

MagicDslItem类来支持

不足之处

目前只支持databinding版本后期可以支持普通版本,DataBindingDslAdapter

在library中使用productFlavors

发表于 2018-10-27

因为公司的app是医生端和患者端,在app开发中会很多模块是相似的只有一部分逻辑不同,比如登录模块,IM模块。

library使用productFlavors

在library的 build.gradle中如下配置,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
flavorDimensions "type"
publishNonDefault true
productFlavors {
doctor {
buildConfigField("String", "appType", "\"1\"")
}
patient {
buildConfigField("String", "appType", "\"2\"")
}
}

定义一个维度为 type类型的,分android和patient,定义了appType,1为医生端,2为患者端,在library中可以使用如下来区分是哪个渠道,BuildConfig.appType,但是当很大一部分代码不一样的时候,可以在src目录下建立两个doctor和patient的包,这样在打包的时候就不会把对方渠道的代码打进去,可以减少app的体积。

1
2
3
4
5
6
7
8
9
10
public class LoginActivity extends AppCompatActivity {
private TextView mTvType;
@Override
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.login_activity_login);
mTvType = findViewById(R.id.tv_login_type);
mTvType.setText(BuildConfig.appType);
}
}

app中使用

app是分两个的,在doctor的app下我们只想要doctor渠道,patient也是类型,但是我在doctor的app下面是不想要这两个渠道的,我只需要其中的一中而且是确定的,app下有自己的渠道,这种情况就是library中有,但是app中没有,这个时候可以使用missingDimensionStrategy选择策,在defaultConfig下,意思就是我当前app下没有和library相同渠道的时候,都采用你设置的渠道,这样不管app自己有什么渠道,都会采用library中你所选择的渠道。(还有很多其它场景可以使用matchingFallbacks属性来设置回退策略)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
defaultConfig {
applicationId "com.github.wkw.doctor"
minSdkVersion 21
targetSdkVersion 28
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
missingDimensionStrategy "type", "doctor"
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
}
}
flavorDimensions "app"
productFlavors {
preProd {
}
}
dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation project(':module_login')
}
}

总结

这样login模块就不用维护两份代码,当出现bug的时候还要修改两份,这种办法非常适合两个高度相似的app。

android组件化登录的思考

发表于 2018-10-21

登录问题思考

很久没有写文章了,因为一些个人的原因,但是现在一切问题都解决了。1年前写了一篇android组件化的学习,里面提到了commonbusiness里面会包含登录模块,但是后来经过实践表明这是一个不理想的决定,因为在各个模块当然运行的时候大多数的功能都是会依赖登录模块的,这样会造成各个模块都要登录。
现在的做法是把登录模块单独提取出来,也能单独运行, 登录模块运行之后,登录成功之后其它模块的app也能感知到登录成功之后的用户数据。

运用内容提供者进行app之间通讯

登录模块定义一个UserContentProvider代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
public class UserContentProvider extends DaggerContentProvider {
private static final int SUCCESS = 1;
private final String[] columnNames = new String[]{AppConstats.TOKEN, AppConstats.UID};
static UriMatcher mUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
static {
mUriMatcher.addURI("com.modularization.android.login", "user", SUCCESS); //uri规则可自己定义,但一定和清单文件一直
}
@Inject
RxSharedPreferences mRxSharedPreferences;
@Override
public boolean onCreate() {
return super.onCreate();
}
@Nullable
@Override
public Cursor query(@NonNull Uri uri, @Nullable String[] strings, @Nullable String s, @Nullable String[] strings1, @Nullable String s1) {
String token = mRxSharedPreferences.getString(AppConstats.TOKEN).get();
String uId = mRxSharedPreferences.getString(AppConstats.UID).get();
MatrixCursor cursor = new MatrixCursor(columnNames);
cursor.addRow(new String[] {token, uId});
return cursor;
}
@Nullable
@Override
public String getType(@NonNull Uri uri) {
return null;
}
@Nullable
@Override
public Uri insert(@NonNull Uri uri, @Nullable ContentValues contentValues) {
return null;
}
@Override
public int delete(@NonNull Uri uri, @Nullable String s, @Nullable String[] strings) {
return 0;
}
@Override
public int update(@NonNull Uri uri, @Nullable ContentValues contentValues, @Nullable String s, @Nullable String[] strings) {
return 0;
}
}

我这里简单的使用了RxSharedPreferences去保存登录成功之后的数据,提供了query方法。

登录的伪代码

1
2
3
4
5
6
7
String token = UUID.randomUUID().toString();
String uId = "123456";
SharedPreferences.Editor editor = mSharedPreferences.edit();
editor.putString(AppConstats.TOKEN, token);
editor.putString(AppConstats.UID, uId);
editor.apply();
getContentResolver().notifyChange(Uri.parse(AppConstats.USER_URI), null);

getContentResolver().notifyChange()方法来通知其它模块app变化了。

因为在commonbusiness的UserSystem类,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
@Singleton
public class UserSystem {
private static final String KEY_TOKEN = "token";
private static final String KEY_USER_ID = "uid";
private BehaviorSubject<TokenEntity> mTokenEntityBehaviorSubject = BehaviorSubject.create();
private Context mContext;
@Inject
public UserSystem(Context context) {
this.mContext = context;
loadTokenEntity();
context.getContentResolver().registerContentObserver(Uri.parse(AppConstats.USER_URI), false, new ContentObserver(null) {
@Override
public void onChange(boolean selfChange) {
super.onChange(selfChange);
loadTokenEntity();
}
});
}
private void loadTokenEntity() {
ContentResolver resolver = mContext.getContentResolver();
Uri uri = Uri.parse(AppConstats.USER_URI);
Cursor cursor = resolver.query(uri, null, null, null, null);
if (cursor != null) {
while (cursor.moveToNext()) {
String token = cursor.getString(0);
String uId = cursor.getString(1);
TokenEntity entity = new TokenEntity(uId, token);
mTokenEntityBehaviorSubject.onNext(entity);
}
cursor.close();
} else {
ToastUtils.show(mContext, "请安装登录模块");
}
}
public Observable<TokenEntity> getTokenEntityObservable() {
return mTokenEntityBehaviorSubject;
}
}

registerContentObserver方法能监听到数据的变化,再去从新获取数据这样在登录模块单独运行的时候,登录成功其它模块的app也能感知得到变化,这样就只要登录一次就可以了。

其它思考

因为每个app接口要是你没有登录你都会返回一个错误码,全局app都有个错误处理的方法,我的如下

1
2
3
4
5
6
7
8
9
10
11
public class ResponseListenerImpl implements ResponseErrorListener {
@Override
public void handleResponseError(Context context, Throwable t) {
Timber.e(t);
if (t instanceof ResponseException) {
}
final String msg = ErrorMessageFactory.create(context, (Exception) t);
ToastUtils.show(context, msg);
}
}

在这里面你就可以获取那个code,然后采用android:scheme 通过uri跳转到登录模块的LoginActivity,这样就算各个模块单独运行也会让你感觉在一个app之内一个,比如A模块app服务端返回要从新登录的code,这样跳转到Login模块的app中走完登录流程,采用内容提供者来通知A模块我登录完成了,A模块获取用户数据,再进行需要登录之后的操作,代码在我的github里面的ModularizationExample项目

Lifecycle学习

发表于 2017-11-09

用于构建生命周期感知组件的类和接口,这些组件可以根据 Activity 或 Fragment 的当前生命周期自动调整其行为,在support版本为26.1.0中默认的AppCompatActivity和fragment已经集成这个功能。

用法

(1)首先让你的类实现LifecycleObserver接口,在类方法上加上注解OnLifecycleEvent

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class LifecycleTest implements LifecycleObserver {
private static final String TAG = "LifecycleTest";
@OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
public void onCreate() {
Log.d(TAG, "onCreate");
}
@OnLifecycleEvent(Lifecycle.Event.ON_START)
public void onStart() {
Log.d(TAG, "onStart");
}
@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
public void onResume() {
Log.d(TAG, "onResume");
}
@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
public void onPause() {
Log.d(TAG, "onPause");
}
@OnLifecycleEvent(Lifecycle.Event.ON_STOP)
public void onStop() {
Log.d(TAG, "onStop");
}
@OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
public void onDestroy() {
Log.d(TAG, "onDestroy");
}
}

其中的Event为以下代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public enum Event {
/**
* Constant for onCreate event of the {@link LifecycleOwner}.
*/
ON_CREATE,
/**
* Constant for onStart event of the {@link LifecycleOwner}.
*/
ON_START,
/**
* Constant for onResume event of the {@link LifecycleOwner}.
*/
ON_RESUME,
/**
* Constant for onPause event of the {@link LifecycleOwner}.
*/
ON_PAUSE,
/**
* Constant for onStop event of the {@link LifecycleOwner}.
*/
ON_STOP,
/**
* Constant for onDestroy event of the {@link LifecycleOwner}.
*/
ON_DESTROY,
/**
* An {@link Event Event} constant that can be used to match all events.
*/
ON_ANY
}

很清晰的看到各种的值对应的生命周期的哪个方法。

(2)在activity或者fragmetn中注册

1
getLifecycle().addObserver(new LifecycleTest());

源码分析

从addObserver这个方法切入,Lifecycle是一个抽象类,它的实现类是LifecycleRegistry,从下面我们可以猜测到运用了典型的观察者模式。

1
2
3
4
5
6
7
8
@MainThread
public abstract void addObserver(LifecycleObserver observer);
@MainThread
public abstract void removeObserver(LifecycleObserver observer);
@MainThread
public abstract State getCurrentState();
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
public class LifecycleRegistry extends Lifecycle {
....省略代码
@Override
public void addObserver(LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(mLifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}
}
static class ObserverWithState {
State mState;
GenericLifecycleObserver mLifecycleObserver;
ObserverWithState(LifecycleObserver observer, State initialState) {
mLifecycleObserver = Lifecycling.getCallback(observer);
mState = initialState;
}
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
}
@NonNull
static GenericLifecycleObserver getCallback(Object object) {
if (object instanceof GenericLifecycleObserver) {
return (GenericLifecycleObserver) object;
}
//noinspection TryWithIdenticalCatches
try {
final Class<?> klass = object.getClass();
Constructor<? extends GenericLifecycleObserver> cachedConstructor = sCallbackCache.get(
klass);
if (cachedConstructor != null) {
return cachedConstructor.newInstance(object);
}
cachedConstructor = getGeneratedAdapterConstructor(klass);
if (cachedConstructor != null) {
if (!cachedConstructor.isAccessible()) {
cachedConstructor.setAccessible(true);
}
} else {
cachedConstructor = sREFLECTIVE;
}
sCallbackCache.put(klass, cachedConstructor);
return cachedConstructor.newInstance(object);
} catch (IllegalAccessException e) {
throw new RuntimeException(e);
} catch (InstantiationException e) {
throw new RuntimeException(e);
} catch (InvocationTargetException e) {
throw new RuntimeException(e);
}
}
public interface GenericLifecycleObserver extends LifecycleObserver {
/**
* Called when a state transition event happens.
*
* @param source The source of the event
* @param event The event
*/
void onStateChanged(LifecycleOwner source, Lifecycle.Event event);
}
class ReflectiveGenericLifecycleObserver implements GenericLifecycleObserver {
private final Object mWrapped;
private final CallbackInfo mInfo;
//缓存ReflectiveGenericLifecycleObserver实例
@SuppressWarnings("WeakerAccess")
static final Map<Class, CallbackInfo> sInfoCache = new HashMap<>();
ReflectiveGenericLifecycleObserver(Object wrapped) {
mWrapped = wrapped;
mInfo = getInfo(mWrapped.getClass());
}
private static CallbackInfo getInfo(Class klass) {
CallbackInfo existing = sInfoCache.get(klass);
if (existing != null) {
return existing;
}
existing = createInfo(klass);
return existing;
}
private static CallbackInfo createInfo(Class klass) {
Class superclass = klass.getSuperclass();
Map<MethodReference, Event> handlerToEvent = new HashMap<>();
if (superclass != null) {
CallbackInfo superInfo = getInfo(superclass);
if (superInfo != null) {
handlerToEvent.putAll(superInfo.mHandlerToEvent);
}
}
Method[] methods = klass.getDeclaredMethods();
Class[] interfaces = klass.getInterfaces();
for (Class intrfc : interfaces) {
for (Entry<MethodReference, Event> entry : getInfo(intrfc).mHandlerToEvent.entrySet()) {
verifyAndPutHandler(handlerToEvent, entry.getKey(), entry.getValue(), klass);
}
}
for (Method method : methods) {
OnLifecycleEvent annotation = method.getAnnotation(OnLifecycleEvent.class);
if (annotation == null) {
continue;
}
Class<?>[] params = method.getParameterTypes();
int callType = CALL_TYPE_NO_ARG;
if (params.length > 0) {
callType = CALL_TYPE_PROVIDER;
if (!params[0].isAssignableFrom(LifecycleOwner.class)) {
throw new IllegalArgumentException(
"invalid parameter type. Must be one and instanceof LifecycleOwner");
}
}
Event event = annotation.value();
if (params.length > 1) {
callType = CALL_TYPE_PROVIDER_WITH_EVENT;
if (!params[1].isAssignableFrom(Event.class)) {
throw new IllegalArgumentException(
"invalid parameter type. second arg must be an event");
}
if (event != Event.ON_ANY) {
throw new IllegalArgumentException(
"Second arg is supported only for ON_ANY value");
}
}
if (params.length > 2) {
throw new IllegalArgumentException("cannot have more than 2 params");
}
MethodReference methodReference = new MethodReference(callType, method);
verifyAndPutHandler(handlerToEvent, methodReference, event, klass);
}
CallbackInfo info = new CallbackInfo(handlerToEvent);
sInfoCache.put(klass, info);
return info;
}
}

ObserverWithState这个类保持当前的状态和GenericLifecycleObserver,其中GenericLifecycleObserver也是个接口,实现类为ReflectiveGenericLifecycleObserver,就是把LifecycleObserver添加了onStateChanged()的方法,这样在ObserverWithState的dispatchEvent的方法中调用onStateChanged,来通知状态发生变化,从而达到要调用那个注解方法,ReflectiveGenericLifecycleObserver里面有CallbackInfo mInfo,其实就是反射获取你添加了OnLifecycleEvent的注解的方法,以便到时候调用。

activity的生命周期和LifecycleRegistry关联,其中有个SupportActivity类,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
public class SupportActivity extends Activity implements LifecycleOwner {
@Override
@SuppressWarnings("RestrictedApi")
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ReportFragment.injectIfNeededIn(this);
}
}
public class ReportFragment extends Fragment {
public static void injectIfNeededIn(Activity activity) {
// ProcessLifecycleOwner should always correctly work and some activities may not extend
// FragmentActivity from support lib, so we use framework fragments for activities
android.app.FragmentManager manager = activity.getFragmentManager();
if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
// Hopefully, we are the first to make a transaction.
manager.executePendingTransactions();
}
}
@Override
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);
dispatchCreate(mProcessListener);
dispatch(Lifecycle.Event.ON_CREATE);
}
private void dispatch(Lifecycle.Event event) {
Activity activity = getActivity();
if (activity instanceof LifecycleRegistryOwner) {
((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
return;
}
if (activity instanceof LifecycleOwner) {
Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
if (lifecycle instanceof LifecycleRegistry) {
((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
}
}
}
}

就是通过添加个空的ReportFragment来监听activity的生命周期的变化(貌似很多地方都用到了这个),通过监听ReportFragment生命周期调用dispatch(Lifecycle.Event.ON_CREATE),最后到LifecycleRegistry的handleLifecycleEvent方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
public void handleLifecycleEvent(Lifecycle.Event event) {
mState = getStateAfter(event);
if (mHandlingEvent || mAddingObserverCounter != 0) {
mNewEventOccurred = true;
// we will figure out what to do on upper level.
return;
}
mHandlingEvent = true;
sync();
mHandlingEvent = false;
}
// happens only on the top of stack (never in reentrance),
// so it doesn't have to take in account parents
private void sync() {
while (!isSynced()) {
mNewEventOccurred = false;
// no need to check eldest for nullability, because isSynced does it for us.
if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
backwardPass();
}
Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
if (!mNewEventOccurred && newest != null
&& mState.compareTo(newest.getValue().mState) > 0) {
forwardPass();
}
}
mNewEventOccurred = false;
}
private boolean isSynced() {
if (mObserverMap.size() == 0) {
return true;
}
State eldestObserverState = mObserverMap.eldest().getValue().mState;
State newestObserverState = mObserverMap.newest().getValue().mState;
return eldestObserverState == newestObserverState && mState == newestObserverState;
}
private void forwardPass() {
Iterator<Entry<LifecycleObserver, ObserverWithState>> ascendingIterator =
mObserverMap.iteratorWithAdditions();
while (ascendingIterator.hasNext() && !mNewEventOccurred) {
Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred
&& mObserverMap.contains(entry.getKey()))) {
pushParentState(observer.mState);
observer.dispatchEvent(mLifecycleOwner, upEvent(observer.mState));
popParentState();
}
}
}
static class CallbackInfo {
final Map<Event, List<MethodReference>> mEventToHandlers;
final Map<MethodReference, Event> mHandlerToEvent;
}

sync同步状态,isSynced判断要不要同步,它是比较当前的状态和我们存我们存放观察者的集合最早或最新放入的观察者的状态,当前状态比之前状态消的时候就是要回滚,好比从OnPause到OnResume,则调用backwardPass回退,forwardPass则为前进,最后调用
dispatchEvent方法就是,ObserverWithState的,最后调用onStateChanged,之前CallbackInfo的mEventToHandlers根据key就是事件,vaule就是方法,通过事件获取方法最后调用方法,从value是个list可以看出你可以给多个方法注解同个生命周期。

总结

大致的流程就是通过在activity添加个空的fragment来和activity的生命周期同步,然后再调用LifecycleRegistry的handleLifecycleEvent方法到ObserverWithState的dispatchEvent方法到ReflectiveGenericLifecycleObserver的onStateChanged方法,根据注解方法获取各自监听生命周期的方法再调用,只是官方做的更加的完善方便。第一次写分析文章,大部分都是源码很少解读的,希望以后能够改进,通过这次的分析,可以学习到可以通过设置个空的fragment来监听activity的生命周末,很多高度抽象的东西,比如LifecycleObserver你只要实现,很多东西就会自动生成,让开发者集成更加的方便。

12
GoGo (吴克伟)

GoGo (吴克伟)

20 日志
10 标签
GitHub 简书
© 2019 GoGo (吴克伟)
由 Hexo 强力驱动
|
主题 — NexT.Mist v5.1.3